期货CTA策略之所以能赚钱,主要是因为以下几点: - 价格走势存在反身性,它总是以趋势的方式不断延续。当投资者观察到价格上升的时候,就会跟风买入,结果造成价格进一步上升。价格下跌也是同样的道理。由于投资者更多的是非理性行为,所以有时候我们会看到,价格涨时涨得离谱,跌时跌的离谱。
- 每一位投资者对盈利和亏损比例的容忍性是非对称的,对风险的承受能力也是不一样的。对于大多数散户来说,他们更倾向于选择更保守的顺势交易方法,市场也更容易走势趋势行情。
- 价格的形成是由成交决定的,真是成交的背后又都是人来推动的,但人性是很难改变的,这就导致固定形态会反复出现的原因,策略在历史数据上回测有效,也就预示着将来可能也会有效。
另外趋势跟踪的交易特点是,在没有行情的时候亏小钱,当行情来的时候赚大钱,但是做过交易的人都知道,市场在大部分时间是出于震荡行情,只有在少量时间是趋势行情。所以趋势跟踪策略在交易时胜率较低,但是综合下来每一次交易的盈亏比较大。
由于趋势跟踪策略在收益上不稳定,所以很多投资机构会用多品种多策略构建一个投资组合,这中间也会配置一定量的反转策略。反转策略就是价格的时间序列存在系数为负的自相关关系,也就是高抛低吸。
与其开发一个大师级的策略,还不如开发多个中庸子策略,那么如何控制这些策略呢?这里我们可以借鉴机器学习中随机森林算法,随机森林并不是一个独立的算法,它是一个包含多棵决策树的决策框架。相当于决策树这个子策略之上的母策略。通过母策略组织和控制子策略集群。
接下来就需要设计一个母策略了,可以通过对全商品期货市场中各个品种的流动性、收益性和稳定性进行评估,筛选出收益具有低波动率的商品期货品种组合,再进行行业中性化筛选,通过组合的行业分散配置来进一步降低整体波动率,最后再通过市值匹配构建实际的商品期货多品种组合进行交易。
每个品种还可以多参数策略配置,可以选择回测表现良好附近的参数组合,当市场趋势明显时,多组参数策略通常会表现一致,相当于加仓;当市场处于震荡行情,多组参数策略通常会表现不一致,从而各自做多或做空进行风险对冲,相当于减仓。这样可以进一步降低投资组合的最大回测率,同时还可以保持整体收益率不变。
|